Entomology, Department of

 

Document Type

Article

Date of this Version

2015

Citation

Insect Biochemistry and Molecular Biology 63 (2015) pp. 86-96.

Comments

This is an open access article. Used by permission.

Abstract

Field evolved resistance of insect populations to Bacillus thuringiensis (Bt) crystalline (Cry) toxins expressed by crop plants has resulted in reduced control of insect feeding damage to field crops, and threatens the sustainability of Bt transgenic technologies. A single quantitative trait locus (QTL) that determines resistance in Ostrinia nubilalis larvae capable of surviving on reproductive stage transgenic corn that express the Bt Cry1Fa toxin was previously mapped to linkage group 12 (LG12) in a backcross pedigree. Fine mapping with high-throughput single nucleotide polymorphism (SNP) anchor markers, a candidate ABC transporter (abcc2) marker, and de novo mutations predicted from a genotyping-by-sequencing (GBS) data redefined a 268.8 cM LG12. The single QTL on LG12 spanned an approximate 46.1 cM region, in which marker 02302.286 and abcc2 were O. nubilalis genome region encoding an abcc2 transporter is in proximity to a single QTL involved in the inheritance of Cry1F resistance, and will assist in the future identification the mutation(s) involved with this phenotype.

Included in

Entomology Commons

Share

COinS