Entomology, Department of
Document Type
Article
Date of this Version
2019
Citation
Scientific Reports | (2019) 9:10703
Abstract
Quantitative reverse transcription PCR (RT-qPCR) is one of the most efficient, reliable and widely used techniques to quantify gene expression. In this study, we evaluated the performance of six southern corn rootworm, Diabrotica undecimpunctata howardi (Barber), housekeeping genes (HKG), β-actin (Actin), β-tubulin (Tubulin), elongation factor 1 alpha (EF1α), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), 40 S ribosomal protein S9 (RpS9) and ubiquitin-conjugating protein (Ubi), under different experimental conditions such as developmental stage, exposure of neonate and adults to dsRNA, exposure of adults to different temperatures, different 3rd instar larva tissues, and neonate starvation. The HKGs were analyzed with four algorithms, including geNorm, NormFinder, BestKeeper, and delta-CT. Although the six HKGs showed a relatively stable expression pattern among different treatments, some variability was observed. Among the six genes, EF1α exhibited the lowest Ct values for all treatments while Ubi exhibited the highest. Among life stages and across treatments, Ubi exhibited the least stable expression pattern. GAPDH, Actin, and EF1α were among the most stable HKGs in the majority of the treatments. This research provides HKG for accurate normalization of RTqPCR data in the southern corn rootworm. Furthermore, this information can contribute to future genomic and functional genomic research in Diabrotica species.
Comments
© The Author(s) 2019.
Open access
https://doi.org/10.1038/s41598-019-47020-y