Earth and Atmospheric Sciences, Department of

 

Date of this Version

February 2007

Comments

Published in Hydrobiologia: The International Journal of Aquatic Sciences 591 (2007), pp. 103–115; doi 10.1007/s10750-007-0798-z. Copyright © 2007 Springer Science+Business Media B.V. Used by permission. http://www.springerlink.com/content/100271/

Abstract

Conductivity and major ion chemistry data were analyzed for a suite of Nebraska (USA) natural lakes, reservoirs, sand pits, and barrow pits to evaluate the magnitude of climatic versus non-climatic influence on ionic concentration and composition. In both natural lakes and sand and barrow pits, conductivity is positively related to longitude and reflects decreasing effective moisture from east to west. Reservoirs showed no relationship between lake conductivity and location, probably because the reservoirs are very strongly influenced by groundwater and surface water inflow and have shorter residence times relative to the other lake types. At smaller spatial scales, conductivity among natural lakes is variable. Lakes that are at low elevation within a groundwater flow system were fresh, because of substantial input of fresh groundwater. In contrast, lakes at high elevation exhibited a wide range of conductivity, probably because of differences in the degree of connection to groundwater and surface to volume ratio impacts on evaporation rates. Differences also were evident among natural lakes in terms of their response to seasonal changes in precipitation. Sub-saline and saline lakes showed more seasonal variation in conductivity than freshwater lakes, and lakes in the more arid part of the state showed larger responses to precipitation change than those in areas to the east that receive higher precipitation.

Share

COinS