Earth and Atmospheric Sciences, Department of
Document Type
Article
Date of this Version
2002
Citation
Mankinen, E. A., N. Lindsley-Griffin, and J. R. Griffin, Concordant paleolatitudes for Neoproterozoic ophiolitic rocks of the Trinity Complex, Klamath Mountains, California, J. Geophys. Res., 107(B10), 2254, doi:10.1029/2001JB001623, 2002.
Abstract
New paleomagnetic results from the eastern Klamath Mountains of northern California show that Neoproterozoic rocks of the Trinity ophiolitic complex and overlying Middle Devonian volcanic rocks are latitudinally concordant with cratonal North America. Combining paleomagnetic data with regional geologic and faunal evidence suggests that the Trinity Complex and related terranes of the eastern Klamath plate were linked in some fashion to the North American craton throughout that time, but that distance between them may have varied considerably. A possible model that is consistent with our paleomagnetic results and the geologic evidence is that the Trinity Complex formed and migrated parallel to paleolatitude in the basin between Laurasia and Australia–East Antarctica as the Rodinian supercontinent began to break up. It then continued to move parallel to paleolatitude at least through Middle Devonian time. Although the eastern Klamath plate served as a nucleus against which more western components of the Klamath Mountains province amalgamated, the Klamath superterrane was not accreted to North America until Early Cretaceous time.
Comments
Copyright 2002 by the American Geophysical Union. Used by permission.