U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska


Date of this Version


Document Type



J. Anim. Sci. 2003. 81:466–473


Copyright 2003 American Society of Animal Science. All rights reserved.


Five hundred thirty-four steers were evaluated over a 2-yr period to develop and validate prediction equations for estimating carcass composition from live animal ultrasound measurements and to compare these equations with those developed from carcass measurements. Within 5 d before slaughter, steers were ultrasonically measured for 12th-rib fat thickness (UFAT), longissimus area (ULMA), rump fat thickness (URPFAT), and body wall thickness (UBDWALL). Carcasses were fabricated to determine weight (KGRPRD) and percentage (PRPRD) of boneless, totally trimmed retail product. Data from steers born in Year 1 (n = 282) were used to develop prediction equations using stepwise regression. Final models using live animal variables included live weight (FWT), UFAT, ULMA, and URPFAT for KGRPRD (R2 = 0.83) and UFAT, URPFAT, ULMA, FWT, and UBDWALL for PRPRD (R2 = 0.67). Equations developed from USDA yield grade variables resulted in R2 values of 0.87 and 0.68 for KGRPRD and PRPRD, respectively. When these equations were applied to steers born in Year 2 (n = 252), correlations between values predicted from live animal models and actual carcass values were 0.92 for KGRPRD, and ranged from 0.73 to 0.76 for PRPRD. Similar correlations were found for equations developed from carcass measures (r = 0.94 for KGRPRD and 0.81 for PRPRD). Both live animal and carcass equations overestimated (P < 0.01) actual KGRPRD and PRPRD. Regression of actual values on predicted values revealed a similar fit for equations developed from live animal and carcass measures. Results indicate that composition prediction equations developed from live animal and ultrasound measurements can be useful to estimate carcass composition.