U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska
Date of this Version
2007
Document Type
Article
Citation
BMC Genetics 2007, 8:69
Abstract
Background: In a previous study, a quantitative trait locus (QTL) exhibiting large effects on both Instron shear force and taste panel tenderness was detected within the Illinois Meat Quality Pedigree (IMQP). This QTL mapped to the q arm of porcine chromosome 2 (SSC2q). Comparative analysis of SSC2q indicates that it is orthologous to a segment of human chromosome 5 (HSA5) containing a strong positional candidate gene, calpastatin (CAST). CAST polymorphisms have recently been shown to be associated with meat quality characteristics; however, the possible involvement of other genes and/or molecular variation in this region cannot be excluded, thus requiring fine-mapping of the QTL.
Results: Recent advances in porcine genome resources, including high-resolution radiation hybrid and bacterial artificial chromosome (BAC) physical maps, were utilized for development of novel informative markers. Marker density in the ~30-Mb region surrounding the most likely QTL position was increased by addition of eighteen new microsatellite markers, including nine publiclyavailable and nine novel markers. Two newly-developed markers were derived from a porcine BAC clone containing the CAST gene. Refinement of the QTL position was achieved through linkage and haplotype analyses. Within-family linkage analyses revealed at least two families segregating for a highly-significant QTL in strong positional agreement with CAST markers. A combined analysis of these two families yielded QTL intervals of 36 cM and 7 cM for Instron shear force and taste panel tenderness, respectively, while haplotype analyses suggested further refinement to a 1.8 cM interval containing CAST markers. The presence of additional tenderness QTL on SSC2q was also suggested.
Conclusion: These results reinforce CAST as a strong positional candidate. Further analysis of CAST molecular variation within the IMQP F1 boars should enhance understanding of the molecular basis of pork tenderness, and thus allow for genetic improvement of pork products. Furthermore, additional resources have been generated for the targeted investigation of other putative QTL on SSC2q, which may lead to further advancements in pork quality.
Comments
This is an Open Access article distributed under the terms of the Creative Commons Attribution License