U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

5-21-2018

Document Type

Article

Citation

U.S. Government Work

Comments

J. Anim. Sci. 2018.96:3043–3054 doi: 10.1093/jas/sky209

Abstract

Water is an essential nutrient, but the effect it has on performance generally receives little attention. There are few systems and guidelines for collection of water intake (WI) phenotypes in beef cattle, which makes large-scale research on WI a challenge. The Beef Improvement Federation has established guidelines for feed intake (FI) and ADG tests, but no guidelines exist for WI. The goal of this study was to determine the test duration necessary for collection of accurate WI phenotypes. To facilitate this goal, individual daily WI and FI records were collected on 578 crossbred steers for a total of 70 d using an Insentec system at the Oklahoma State University Willard Sparks Beef Research Unit. Steers were fed in five groups and were individually weighed every 14 d. Within each group, steers were blocked by BW (low and high) and randomly assigned to one of four pens containing approximately 30 steers per pen. Each pen provided 103.0 m2 of shade and included an Insentec system containing six feed bunks and one water bunk. Steers were fed a constant diet across groups and DMI was calculated using the average of weekly percent DM within group. Average FI and WI for each animal were computed for increasingly large test durations (7, 14, 21, 28, 35, 42, 49, 56, 63, and 70 d), and ADG was calculated using a regression formed from BW taken every 14 d (0, 14, 28, 42, 56, and 70 d). Intervals for all traits were computed starting from both the beginning (day 0) and the end of the testing period (day 70). Pearson and Spearman correlations were computed for phenotypes from each shortened test period and for the full 70-d test. Minimum test duration was determined when the Pearson correlations were greater than 0.95 for each trait. Our results indicated that minimum test duration for WI, DMI, and ADG were 35, 42, and 70 d, respectively. No comparable studies exist for WI; however, our results for FI and ADG are consistent with those in the literature. Although further testing in other populations of cattle and areas of the country should take place, our results suggest that WI phenotypes can be collected concurrently with DMI, without extending test duration, even if following procedures for decoupled intake and gain tests.

Share

COinS