U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska
Date of this Version
6-1-2022
Document Type
Article
Citation
Journal of Food Protection, Vol. 85, No. 8, 2022, Pages 1114–1121 https://doi.org/10.4315/JFP-21-364
Abstract
Salmonella is a common cause of foodborne illness in the United States, and several strains of Salmonella have been identified as resistant to antibiotics. It is not known whether strains that are antibiotic resistant (ABR) and that have some tolerance to antimicrobial compounds are also able to resist the inactivation effects of antimicrobial interventions used in fresh meat processing. Sixty-eight Salmonella isolates (non-ABR and ABR strains) were treated with half concentrations of lactic acid (LA), peracetic acid (PAA), and cetylpyridinium chloride (CPC), which are used in beef processing plants to screen for tolerant strains. Six strains each from non-ABR and ABR Salmonella that were most tolerant of LA (2%), PAA (200 ppm), and CPC (0.4%) were selected. Selected strains were inoculated on surfaces of fresh beef and subjected to spray wash treatment with 4% LA, 400 ppm PAA, or 0.8% CPC for the challenge study. Tissue samples were collected before and after each antimicrobial treatment for enumeration of survivors. Spray treatment with LA, PAA, or CPC significantly reduced non-ABR Salmonella and ABR Salmonella on surfaces of fresh beef by 1.95, 1.22, and 1.33 log CFU/cm2, and 2.14, 1.45, and 1.43 log CFU/cm2, respectively. The order of effectiveness was LA . PAA = CPC. The findings also indicated that LA, PAA, and CPC were equally (P ≤ 0.05) effective against non-ABR and ABR Salmonella on surfaces of fresh beef. These data contribute to the body of work that indicates that foodborne pathogens that have acquired both antibiotic resistance and antimicrobial tolerance are still equally susceptible to meat processing antimicrobial intervention treatments.
Comments
Not subject to U.S. Copyright