U.S. Department of Agriculture: Animal and Plant Health Inspection Service

 

United States Department of Agriculture Wildlife Services: Staff Publications

Document Type

Article

Date of this Version

2017

Citation

Journal of Virological Methods 239 (2017) 9–16

Comments

U.S. Government Work

Abstract

Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Therefore, sensitive, reliable and easy to use methods for the concentration, detection and quantification of microorganisms associated with the safety and quality of water are needed. In this study, we performed a field evaluation of an anion exchange resin-based method to concentrate male-specific (F + ) RNA coliphages (FRNA), fecal indicator organisms, from diverse environmental waters that were suspected to be contaminated with feces. In this system, FRNA coliphages are adsorbed to anion exchange resin and direct nucleic acid isolation is performed, yielding a sample amenable to real-time reverse transcriptase (RT)-PCR detection. Matrix-dependent inhibition of this method was evaluated using known quantities of spiked FRNA coliphages belonging to four genogroups (GI, GII, GII and GIV). RT-PCR-based detection was successful in 97%, 72%, 85% and 98% of the samples spiked (106 pfu/l) with GI, GII, GIII and GIV, respectively. Differential FRNA coliphage genogroup detection was linked to inhibitors that altered RT-PCR assay efficiency. No association between inhibition and the physicochemical properties of the water samples was apparent. Additionally, the anion exchange resin method facilitated detection of naturally present FRNA coliphages in 40 of 65 environmental water samples (61.5%), demonstrating the viability of this system to concentrate FRNA coliphages from water.

Included in

Life Sciences Commons

Share

COinS