U.S. Department of Agriculture: Animal and Plant Health Inspection Service
United States Department of Agriculture Wildlife Services: Staff Publications
Document Type
Article
Date of this Version
2017
Citation
Journal of Zoo and Wildlife Medicine 48(1): 80–90, 2017
Abstract
Wild rat pests in the environment cause crop and property damage and carry disease. Traditional methods of reducing populations of these pests involve poisons that can cause accidental exposures in other animals and humans. Fertility management with nonlethal chemicals would be an improved method of rat pest population control. Two chemicals known to target ovarian function in female rats are 4-vinylcyclohexene diepoxide (VCD) and triptolide. Additionally, triptolide impairs spermatogenesis in males. A liquid bait containing no active ingredients (control), or containing triptolide (0.001%) and VCD (0.109%; active) was prepared to investigate the potential use of these agents for wild rat pest population control. Liquid bait was made available to male (n = 8 control; n = 8 active) and female (n = 8 control; n = 8 active) Sprague Dawley rats (Rattus norvegicus) for oral consumption prior to breeding. Whereas, control bait-treated females produced normal-sized litters (10.0 ± 1.7 pups/litter), treated females delivered no pups. Wild Norway male (n = 20) and female (n = 20) rats (Rattus norvegicus) were trapped, individually housed, and one group given free access to control bait, one group to active bait. Following three cycles of treatment-matched mating pairs, females consuming control bait (control) produced normal litter sizes (9.73 ± 0.73 pups/litter). Females who had consumed active bait (treated) produced no litters on breeding cycles one and two; however, 2 of 10 females produced small litters on the third mating cycle. In a fourth breeding cycle, control females were crossmated with treated males, and treated females were crossmated with control males. In both groups, some dams produced litters, while others did not. The differences in response reflect a heterogeneity in return to cyclicity between females. These results suggest a potential approach to integrated pest management by compromising fertility, and could provide a novel alternative to traditional poisons for reducing populations of wild rat pests.
Comments
U.S. Government Work