Mechanical & Materials Engineering, Department of

 

Date of this Version

2021

Citation

Additive Manufacturing 46 (2021) 102167

doi: 10.1016/j.addma.2021.102167

Comments

Copyright © 2021 Elsevier B.V. Used by permission.

Abstract

Coupling additive manufacturing (AM) with interlayer peening introduces bulk anisotropic properties within a build across several centimeters. Current methods to map high resolution anisotropy and heterogeneity are either destructive or have a limited penetration depth using a nondestructive method. An alternative pseudo-nondestructive method to map high-resolution anisotropy and heterogeneity is through energy consumption during milling. Previous research has shown energy consumption during milling correlates with surface integrity. Since surface milling of additively manufactured parts is often required for post-processing to improve dimensional accuracy, an opportunity is available to use surface milling as an alternative method to measure mechanical properties and build quality. The variation of energy consumption during the machining of additive parts, as well as hybrid AM parts, is poorly understood. In this study, the use of net cutting specific energy was proposed as a suitable metric for measuring mechanical properties after interlayer ultrasonic peening of 316 stainless steel. Energy consumption was mapped throughout half of a cuboidal build volume. Results indicated the variation of net cutting specific energy increased farther away from the surface and was higher for hybrid AM compared to as-printed and wrought. The average lateral and layer variation of the net cutting specific energy for printed samples was 81% higher than the control, which indicated a significantly higher degree of heterogeneity. Further, it was found that energy consumption was an effective process signature exhibiting strong correlations with microhardness. Anisotropy based on residual strains were measured using net cutting specific energy and validated by hole drilling. The proposed technique contributes to filling part of the measure gap in hybrid additive manufacturing and capitalizes on the preexisting need for machining of AM parts to achieve both goals of surface finish and quality assessment in one milling operation.

Share

COinS