Mechanical & Materials Engineering, Department of
Document Type
Article
Date of this Version
11-8-2022
Citation
PHYSICAL REVIEW E 106, 054204 (2022). DOI: 10.1103/PhysRevE.106.054204
Abstract
We study the dynamics of solitary waves traveling in a one-dimensional chain of bistable elements in the presence of a local inhomogeneity (“defect”). Numerical simulations reveal that depending upon its initial speed, an incoming solitary wave can get transmitted, captured, or reflected upon interaction with the defect. The dynamics are dominated by energy exchange between the wave and a breather mode localized at the defect. We derive a reduced-order two degree of freedom Hamiltonian model for wave-breather interaction and analyze it using dynamical systems techniques. Lobe dynamics analysis reveals the fine structure of phase space that leads to the complicated dynamics in this system. This work is a step toward developing a rational approach to defect engineering for manipulating nonlinear waves in mechanical metamaterials.
Included in
Mechanics of Materials Commons, Nanoscience and Nanotechnology Commons, Other Engineering Science and Materials Commons, Other Mechanical Engineering Commons
Comments
Used by permission.