Mechanical and Materials Engineering, Department of

 

Department of Mechanical and Materials Engineering: Faculty Publications

Document Type

Article

Date of this Version

2007

Citation

Journal of Applied Physics (2007) 101: 063537

Comments

Copyright © 2007, American Institute of Physics. Used by permission

Abstract

In this paper, a transient technique is developed to characterize the thermophysical properties of one-dimensional conductive and nonconductive microscale wires. In this technique, the to-be-measured thin wire is suspended between two electrodes. When feeding a step dc to the sample, its temperature will increase and take a certain time to reach the steady state. This temperature evolution is probed by measuring the variation of voltage over the wire, which is directly related to resistance/temperature change. The temperature evolution history of the sample can be used to determine its thermal diffusivity. A 25.4 µm thick platinum wire is used as the reference sample to verify this technique. Sound agreement is obtained between the measured thermal diffusivity and the reference value. Applying this transient electrothermal technique, the thermal diffusivities of single-wall carbon nanotube bundles and polyester fibers are measured.

Share

COinS