National Aeronautics and Space Administration
Date of this Version
1999
Citation
International Journal for Numerical Methods in Fluids 30: 675–711 (1999).
Abstract
Spurious behavior in underresolved grids and:or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed non-equilibrium flow model, (b) the direct numerical simulation (DNS) of 2D incompressible flow over a backward facing step, (c) a loosely coupled approach for a 2D fluid–structure interaction, and (d) a 3D unsteady compressible flow simulation of vortex breakdown on delta wings. These examples were chosen based on their non-apparent spurious behaviors that were difficult to detect without extensive grid and:or temporal refinement studies and without some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations, underresolved grids, semi-implicit procedures, loosely coupled implicit procedures, and insufficiently long-time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the non-linear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD.
Comments
U.S. government work.