National Aeronautics and Space Administration

 

Date of this Version

12-2008

Comments

Published in International Journal of Remote Sensing Vol. 29, No. 24, 20 December 2008, 7141–7158.

Abstract

The long term Advanced Very High Resolution Radiometer (AVHRR)- Normalized Difference Vegetation Index (NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensorspecific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at 1° is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.

Share

COinS