National Aeronautics and Space Administration
Date of this Version
2010
Citation
Remote Sensing of Environment 114 (2010) 496–503; doi:10.1016/j.rse.2009.10.007
Abstract
The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. Wedescribe a cloud-gap-filled (CGF) daily snow-covermap using a simple algorithmto track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.05° resolution climate-modeling grid daily snow-cover product,MOD10C1, each grid cell of the CGFmap provides a cloud-persistence count (CPC) that tellswhether the current or a prior day was used to make the snow decision. Percentage of grid cells “observable” is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow–water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD10C1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain-averaged bias improvement of ~11%, whereas such improvement using the standard MOD10C1 maps is ~3%. These improvements suggest that the Noah model underestimates SWE and snowdepth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.