Natural Resources, School of

 

First Advisor

Brian D. Wardlow

Committee Members

Daniel Uden, Patrick Bitterman

Date of this Version

8-2024

Document Type

Thesis

Citation

A thesis presented to the faculty of the Graduate College at the University of Nebraska in partial fulfillment of requirements for the degree of Master of Science

Major: Natural Resource Sciences

Under the supervision of Professor Brian D. Wardlow

Lincoln, Nebraska, August 2024

Comments

Copyright 2024, Christian Ross Nielsen. Used by permission

Abstract

Understanding and conserving ecological connectivity is critical to the preservation of vulnerable landscapes. Circuit theory, in which landscapes are imagined as circuit boards with varying resistances to the flow of current, is being increasingly used to model spatially explicit connectivity of landscapes and to inform land management and conservation decision-making. Utilizing continuous, quantitative estimates of percent cover by five land cover functional groups to create a conductance surface, this study expanded upon an established application of circuit theory that used the open-source software Circuitscape to model species-agnostic, omnidirectional connectivity. This model was automated using Python to create time-series connectivity maps from which comparisons could be made across time to assess pre- and post-fire land cover patterns across the landscape.

By applying this methodology to a United States Great Plains landscape affected by a large wildfire in 2012, this study found that for most functional land cover types, spatial configurations of areas of high and low connectivity changed in response to the wildfire disturbance, but quickly returned to pre-fire conditions. Exceptions were the tree and shrub functional groups, which saw persistent patterns of decreased connectivity in areas that were burned. This approach to modeling landscape connectivity over time could further enhance circuit theory-based assessments of landscapes affected by wildfire and tools for land managers promoting functional connectivity and resiliency in those landscapes.

Advisor: Brian D. Wardlow

Share

COinS