Natural Resources, School of

 

ORCID IDs

https://orcid.org/0000-0001-9934-1822

Document Type

Article

Date of this Version

2018

Citation

Atmosphere 2018, 9, 48; doi:10.3390/atmos9020048 www.mdpi.com/journal/atmosphere

Comments

2018 by the authors.

Abstract

Soil erosion is one of the most critical environmental hazards in the world. Understanding the changes in rainfall erosivity (RE) and erosivity density (ED), as well as their affecting factors, at local and catchment scales in the context of climate warming is an important prerequisite of soil erosion prevention and soil loss risk assessment. The present study identified the variability and trends of RE and ED in terms of both time and space in the Ganjiang River catchment over the period of 1960–2012, and also analyzed and discussed the impact of climate change. The results show that RE and ED in the catchment had great monthly variations and high year-to-year variability. Both presented long-term increasing trends over the entire study period. The highest RE and ED were observed in June and in the eastern and northeast parts of the catchment, which indicated that June was the most susceptible month for soil erosion in this area and the lower reaches of the Ganjiang River was the riskiest area for soil erosion. Finally, the East Asian summer monsoon and climate change were highly correlated with changes in RE and ED.

COinS