Natural Resources, School of
Document Type
Article
Date of this Version
2021
Citation
Published in Environmental Technology & Innovation 22 (2021) 101396
doi:10.1016/j.eti.2021.101396
Abstract
The research objective was to develop a persulfate-activator soft solid (PASS) as a biodegradable slow-release oxidant to treat phenol-contaminated groundwater. PASS was prepared by graft copolymerization of acrylic acid (AA) and acrylamide (AM) onto 1% (w/v) sodium alginate mixed with 500 mg L−1 sodium persulfate and 5 mg L−1 ferrous sulfate. The physical and chemical properties of PASS were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, the water content and swelling ratio. Various variables, including the ratio of AA/AM, pH, temperature and the type of groundwater cations affecting PS release, were investigated. The maximum PS release in DI water was 98% in the ratio of PASS 1 (AA/AM, 75/25), 96% at pH 3, 83% at 25 °C, and 80% with Na+. The major factors controlling PS release were the AA/AM ratio and pH. PASS 1 can be stable in size and shape for 6–8 days and completely degraded within 34 days. The degradation rates of 10 mgL−1 phenol using PASS produced the highest kobs values for each variable at a ratio of PASS 1 (k = 0.1408 h−1), pH 7 (k = 0.1338 h−1), 25 °C (k = 0.1939 h−1), and Ca2+ (k = 0.1336 h−1). The temperature of the groundwater was key to driving the reaction between PS and phenol. PASS 1 was applied in simulated phenol-contaminated groundwater via horizontal tanks containing Ottawa sand. The results indicated 93.2% phenol removal within 72 h in a narrow horizontal flow tank and 41.7% phenol removal in a wide horizontal flow tank with aeration.
Included in
Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons
Comments
Copyright © 2021 Elsevier B.V. Used by permission.