Natural Resources, School of

 

Document Type

Article

Date of this Version

2020

Citation

Transactions of the ASABE Vol. 63(6): 2059-2081

doi:10.13031/trans.13933

Comments

© 2020 American Society of Agricultural and Biological Engineers

Abstract

The FAO-56 dual crop coefficient procedure was used to determine evapotranspiration (ET) and net irrigation water requirements for all agricultural areas of the states of Idaho and Nevada and in a western U.S. study on effects of climate change on future irrigation water requirements. The products of the applications are for use by state governments for water rights management, irrigation system planning and design, wastewater application system design and review, hydrologic water balances, and groundwater modeling. The products have been used by the U.S. federal government for assessing impacts of current and future climate change on irrigation water demands. The procedure was applied to data from more than 200 weather station locations across the state of Idaho, 200 weather station locations across the state of Nevada, and eight major river basins in the western U.S. for available periods of weather records. Estimates were made over daily, monthly, and annual time intervals. Methods from FAO-56 were employed for calculating reference ET and crop coefficients (Kc), with ET calculations performed for all times of the calendar year including winter. Expressing Kc as a function of thermal-time units allowed application across a wide range of local climates and elevations. The ET estimates covered a wide range of agricultural crops grown in the western U.S. plus a number of native plant systems, including wetlands, rangeland, and riparian trees. Evaporation was estimated for three types of open-water surfaces ranging from deep reservoirs to small farm ponds.

COinS