Natural Resources, School of

 

Document Type

Article

Date of this Version

2-21-2024

Citation

Adams B, Bowley J, Rohwer M, Oberg E, Willemssens K, Wintersteen W, Peterson RKD, Higley LG. 2024. Heavy metal movement through insect food chains in pristine thermal springs of Yellowstone National Park. PeerJ 12:e16827 http://doi.org/10.7717/peerj.16827

Comments

Open access.

Abstract

Yellowstone National Park thermal features regularly discharge various heavy metals and metalloids. These metals are taken up by microorganisms that often form mats in thermal springs. These microbial mats also serve as food sources for invertebrate assemblages. To examine how heavy metals move through insect food webs associated with hot springs, two sites were selected for this study. Dragon-Beowulf Hot Springs, acid-sulfate chloride springs, have a pH of 2.9, water temperatures above 70 oC, and populations of thermophilic bacterial, archaeal, and algal mats. Rabbit Creek Hot Springs, alkaline springs, have a pH of up to 9, some water temperatures in excess of 60 oC, and are populated with thermophilic and phototrophic bacterial mats. Mats in both hydrothermal systems form the trophic base and support active metal transfer to terrestrial food chains. In both types of springs, invertebrates bioaccumulated heavy metals including chromium, manganese, cobalt, nickel, copper, cadmium, mercury, tin and lead, and the metalloids arsenic, selenium, and antimony resulting from consuming the algal and bacterial mat biomass. At least two orders of magnitude increase in concentrations were observed in the ephydrid shore fly Paracoenia turbida, as compared to the mats for allmetals except antimony, mercury, and lead. The highest bioaccumulation factor (BAF) of 729 was observed for chromium. At the other end of the food web, the invertebrate apex predator, Cicindelidia haemorrhagica, had at least a 10-fold BAF for all metals at some location-year combinations, except with antimony. Of other taxa, high BAFs were observed with zinc for Nebria sp. (2180) and for Salda littoralis (1080). This accumulation, occurring between primary producer and primary consumer trophic levels at both springs, is biomagnified through the trophic web. These observations suggest trace metals enter the geothermal food web through the microbial mat community and are then transferred through the food chain. Also, while bioaccumulation of arsenic is uncommon, we observed five instances of increases near or exceeding 10-fold: Odontomyia sp. larvae (13.6), P. turbida (34.8), C. haemorrhagica (9.7), Rhagovelia distincta (16.3), and Ambrysus mormon (42.8).

COinS