Natural Resources, School of
Document Type
Article
Date of this Version
2012
Citation
Chemosphere 89:6 (October 2012), pp. 656–664; doi: 10.1016/j.chemosphere.2012.06.004
Abstract
The development of slow-release chemical oxidants for sub-surface remediation is a relatively new technology. Our objective was to develop slow-release persulfate-paraffin candles to treat BTEX-contaminated groundwater. Laboratory-scale candles were prepared by heating and mixing Na2S2O8 with paraffin in a 2.25 to 1 ratio (w/w), and then pouring the heated mixture into circular molds that were 2.38 cm long and either 0.71 or 1.27 cm in diameter. Activator candles were prepared with FeSO4 or zero-valent iron (ZVI) and wax. By treating benzoic acid and BTEX compounds with slow-release persulfate and ZVI candles, we observed rapid transformation of all contaminants. By using 14C-labeled benzoic acid and benzene, we also confirmed mineralization (conversion to CO2) upon exposure to the candles. As the candles aged and were repeatedly exposed to fresh solutions, contaminant transformation rates slowed and removal rates became more linear (zero-order); this change in transformation kinetics mimicked the observed dissolution rates of the candles. By stacking persulfate and ZVI candles on top of each other in a saturated sand tank (14 × 14 × 2.5 cm) and spatially sampling around the candles with time, the dissolution patterns of the candles and zone of influence were determined. Results showed that as the candles dissolved and persulfate and iron diffused out into the sand matrix, benzoic acid or benzene concentrations (Co = 1 mM) decreased by >90% within 7 d. These results support the use of slow-release persulfate and ZVI candles as a means of treating BTEX compounds in contaminated groundwater.
Includes Supplementary Materials.
Comments
Copyright © 2012 Elsevier Ltd. Used by permission.