Natural Resources, School of
Document Type
Article
Date of this Version
2012
Citation
Remote Sensing of Environment 121 (2012) 118–124; doi:10.1016/j.rse.2012.01.024
Abstract
We present here results that strongly support the use of MERIS-based NIR-red algorithms as standard tools for estimating chlorophyll-a (chl-a) concentration in turbid productive waters. The study was carried out as one of the steps in testing the potential of the universal applicability of previously developed NIR-red algorithms, which were earlier calibrated using a limited set of MERIS imagery and in situ data from the Azov Sea and the Taganrog Bay, Russia, and data that were synthetically generated using a radiative transfer model. We used an extensive set of MERIS imagery and in situ data collected over a period of three years in the Azov Sea and the Taganrog Bay for this validation task. We found that the two-band and three-band NIR-red algorithms gave consistently highly accurate estimates of chl-a concentration, with a mean absolute error of 4.32 mg m−3 and 4.71 mg m−3, respectively, and a root mean square error as low as 5.92 mg m−3, for data with chl-a concentrations ranging from 1.09 mg m−3 to 107.82 mg m−3. This obviates the need for case-specific reparameterization of the algorithms, as long as the specific absorption coefficient of phytoplankton in the water does not change drastically, and presents a strong case for the use of NIR-red algorithms as standard algorithms that can be routinely applied for near-real-time quantitative monitoring of chl-a concentration in the Azov Sea and the Taganrog Bay, and potentially elsewhere, which will be a real boon to ecologists, natural resource managers and environmental decision-makers.