Natural Resources, School of
Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales
Document Type
Article
Date of this Version
2018
Citation
Davis BE, Komoroske LM, Hansen MJ, Poletto JB, Perry EN, Miller NA, Ehlman SM, Wheeler SG, Sih A, Todgham AE, Fangue NA (2018) Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales. Conserv Physiol 6(1): coy038;
doi:10.1093/ conphys/coy038.
Abstract
California’s coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally cooccurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) μatm PCO2 and 8.0 (normoxic) and 4.5 mg l−1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.
Included in
Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons
Comments
© The Author(s) 2018. Published by Oxford University Press and the Society for Experimental Biology. 1 This is an Open Access article distributed under the terms of the Creative Commons Attribution License