Natural Resources, School of
Document Type
Article
Date of this Version
12-22-2011
Citation
ENSEMBLE FORECAST SPREAD INDUCED BY SOIL MOISTURE CHANGES 1-16
Abstract
This study investigated the potential impact of soil moisture perturbations on the statistical spread of an ensemble forecast for three different synoptic events during the summer of 2006. Soil moisture was perturbed from a control simulation to generate a 12 member ensemble with six drier and six moister soils. The impacts on the near-surface atmospheric conditions and on precipitation were analysed. It was found, as previous studies have confirmed, that soil moisture can change the spatial and temporal distribution of precipitation and of the overlying circulation. It was found that regardless of the conditions in synoptic forcing, temperature, relative humidity and horizontal wind field exhibited a spatial correlation coefficient (R) close to one with respect to the control simulation. Vertical velocity, however, showed a marked decrease in R down to 0.4 as the precipitation activity increased. For vertical velocity, however, this quantity grew to near 1.0 consistent with R near zero and standard deviations very close to that of the control. These results suggested a more complex picture in which soil moisture perturbations played a major role in modifying precipitation and the near-surface circulation but did not broaden the statistical spread of trajectories in phase space of all variables.
Included in
Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons
Comments
2012 A. I. Quintanar and R. Mahmooda.