Nutrition and Health Sciences, Department of

 

Document Type

Article

Date of this Version

11-2006

Citation

Journal of Nutrition 136:11 (November 2006), pp. 2722–2727.

doi: 10.1093/jn/136.11.2722

Comments

Copyright © 2006 American Society for Nutrition; published by Oxford University Press. Used by permission.

Abstract

Consumption of plant sterol esters reduces plasma LDL cholesterol concentration by inhibiting intestinal cholesterol absorption. Commercially available plant sterol esters are prepared by esterifying free sterols to fatty acids from edible plant oils such as canola, soybean, and sunflower. To determine the influence of the fatty acid moiety on cholesterol metabolism, plant sterol esters were made with fatty acids from soybean oil (SO), beef tallow (BT), or purified stearic acid (SA) and fed to male hamsters for 4 wk. A control group fed no plant sterol esters was also included. Hamsters fed BT and SA had significantly lower cholesterol absorption and decreased concentrations of plasma non-HDL cholesterol and liver esterified cholesterol, and significantly greater fecal sterol excretion than SO and control hamsters. Cholesterol absorption was lowest in hamsters fed SA (7.5%), whereas it was 72.9% in control hamsters. Cholesterol absorption was correlated with fecal sterol excretion (r = –0.72, P < 0.001), liver cholesterol concentration (r = 0.88, P < 0.001), and plasma non-HDL cholesterol concentration (r = 0.85, P < 0.001). A multiple regression model that included each sterol ester type vs. cholesterol absorption indicated that intake of steryl stearate was the only dietary component that contributed significantly to the model (R2 = –0.75, P < 0.001). Therefore, our results demonstrate that BT and SA are more effective than SO in reducing cholesterol absorption, liver cholesterol, and plasma non-HDL cholesterol concentration, suggesting that cardioprotective benefits can be achieved by consuming stearate-enriched plant sterol esters.

Share

COinS