Nutrition and Health Sciences, Department of

 

Date of this Version

10-27-2018

Citation

Iwata et al. Skeletal Muscle (2018) 8:33 https://doi.org/10.1186/s13395-018-0181-y

Comments

OPEN ACCESS

Abstract

Background: The tetracycline-responsive system (Tet-ON/OFF) has proven to be a valuable tool for manipulating gene expression in an inducible, temporal, and tissue-specific manner. The purpose of this study was to create and characterize a new transgenic mouse strain utilizing the human skeletal muscle α-actin (HSA) promoter to drive skeletal muscle-specific expression of the reverse tetracycline transactivator (rtTA) gene which we have designated as the HSA-rtTA mouse. Methods: To confirm the HSA-rtTA mouse was capable of driving skeletal muscle-specific expression, we crossed the HSA-rtTA mouse with the tetracycline-responsive histone H2B-green fluorescent protein (H2B-GFP) transgenic mouse in order to label myonuclei. Results: Reverse transcription-PCR confirmed skeletal muscle-specific expression of rtTA mRNA, while single-fiber analysis showed highly effective GFP labeling of myonuclei in both fast- and slow-twitch skeletal muscles. Pax7 immunohistochemistry of skeletal muscle cross-sections revealed no appreciable GFP expression in satellite cells. Conclusions: The HSA-rtTA transgenic mouse allows for robust, specific, and inducible gene expression across muscles of different fiber types. The HSA-rtTA mouse provides a powerful tool to manipulate gene expression in skeletal muscle.

Share

COinS