Agronomy and Horticulture Department

 

Mitosis and Meiosis and the Cell Cycle

Date of this Version

2021

Document Type

Article

Citation

Plant and Soil Sciences eLibrary (PASSeL) Lesson

Comments

Copyright © 2021 Don Lee, Walter Suza, and Marjorie Hanneman. Used by permission.

This project was supported in part by the National Research Initiative Competitive Grants CAP project 2011-68002-30029 from the USDA National Institute of Food and Agriculture, administered by the University of California-Davis and by the National Science Foundation (NSF), Division of Undergraduate Education, National SMETE Digital Library Program, Award #0938034, administered by the University of Nebraska. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the USDA or NSF.

Development of this lesson was supported in part by Cooperative State Research, Education, & Extension Service, U.S. Dept. of Agriculture under Agreement Number 98-EATP-1-0403 administered by Cornell University and the American Distance Education Consortium (ADEC). Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Updates to the lesson in 2021 were supported in part by Iowa State University Libraries Open Educational Resources initiative.

Abstract

Multicellular organisms such as plants and animals are composed of millions to trillions of cells that work together. This lesson details the steps of somatic cell division to produce identical cells by mitosis and germline cell division to produce gametes by meiosis. Emphasis is on what is happening genetically as these new cells are made in multicellular, sexually reproducing organisms.

Introduction

Multicellular organisms such as plants and animals are composed of millions to trillions (1,000,000,000) of cells that work together. The cells that make up different tissues have different shapes and perform different functions for the plant or animal. Even though they have diverse functions, each somatic cell in the organism normally has the same chromosomes and therefore the same genetic makeup. Furthermore, the millions of cells that makeup a mature organism originated from a single cell formed when the male and female gametes from the parents of the organism fused. This single cell established the life of the organism. Understanding multicellular organisms requires an understanding of the lifecycle of the cells that make up the organism.

Modules:

Share

COinS