Research Papers in Physics and Astronomy

 

Date of this Version

Spring 4-7-2009

Comments

Published in Physical Review B.

Abstract

Nanostructured materials for refrigeration applications are experimentally realized by molecular beam epitaxial growth of Co/Cr superlattices using mean-field theoretical concepts as guiding principles. Magnetocaloric properties are deduced from measurements of the temperature and field dependence of the magnetization of our samples. More generally, the potential of artificial antiferromagnets for near room-temperature refrigeration is explored. The effects of intraplane and interplane exchange interactions on the magnetic phase diagram in Ising-type model systems are revisited in mean-field considerations with special emphasis on tailoring magnetocaloric properties. The experimental results are discussed in light of our theoretical findings, and extrapolations for future improved nanostructures are provided.

Included in

Physics Commons

Share

COinS