Research Papers in Physics and Astronomy


Date of this Version



APPLIED PHYSICS LETTERS 102, 031915 (2013).


Copyright (c) 2013 American Institute of Physics. Used by permission.


Composite materials with large magnetoelectric effect are proposed for application in advanced near-room-temperature refrigeration. The key innovation rests on utilizing the magnetocaloric effect in zero applied magnetic fields. This approach promises sizable isothermal entropy change and virtually temperature-independent refrigerant capacity through pure voltage-control. It is in sharp contrast with the conventional method of exploiting the magnetocaloric effect through applied magnetic fields. We outline the thermodynamics and estimate an isothermal entropy change specifically for the La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3(001) two-phase composite material. Finally, we propose structural variations of two-phase composites, which help in overcoming the challenging task of producing nanostructured material in macroscopic quantities.