Physics and Astronomy, Department of

 

First Advisor

Xiaoshan Xu

Second Advisor

Ralph Skomski

Third Advisor

David J. Sellmyer

Date of this Version

Summer 8-10-2023

Comments

A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy, Major: Physics and Astronomy, Under the Supervision of Professor Xiaoshan Xu. Lincoln, Nebraska: August, 2023

Copyright © 2023 Ahsan Ullah

Abstract

Conduction electrons change their spin direction due to the exchange interaction with the lattice spins. Ideally, the spins of the conduction electrons follow the atomic spin adiabatically, so that spins like S1, S2, and S3 can be interpreted as time-ordered sequences t1 < t2 < t3. Such spin sequences yield a quantum-mechanical phase factor in the wave function,  →ei, where  is known as the Berry phase. The corresponding spin rotation translates into a Berry curvature and an emergent magnetic field and subsequently, Hall-effect contribution known as the topological Hall-effect. This dissertation explores topological Hall-effect in particulate magnets, where noncollinear spins are stabilized by competition between different magnetic interactions. The topologically non-trivial spin textures in these nanostructures are flower states, curling states, vortex, and magnetic bubbles, which give rise to topological Hall-effect and have finite spin chirality and Skyrmion number Q. Topological Hall-effect is investigated in noninteracting nanoparticles, exchanges coupled centrosymmetric nanoparticles, exchanges coupled non-centrosymmetric nanoparticles which possess Dzyaloshinskii-Moriya interaction (DMI), and exchanged coupled Hard and soft magnetic films. Micromagnetic modeling, simulations, analytical calculations, and experimental methods are used to determine topological Hall-effect. In very small noninteracting nanoparticles, the reverse magnetic fields enhance Q due to the flower state until the reversal occurs, whereas, for particles with a radius greater than coherence radius, the Q jumps to a larger value at the nucleation field representing the curling state. The comparisons of magnetization patterns between experimental and computed magnetic force microscopy (MFM) measurements show the presence of spin chirality. Magnetic and Hall-effect measurements identify topological Hall-effect in the exchange-coupled Co and CoSi-nanoparticle films. The origin of the topological Hall-effect namely, the chiral domains with domain-wall chirality quantified by an integer skyrmion number in Co and chiral spins with partial skyrmion number in CoSi. These spin structures are different from the Skyrmions due to DMI in B-20 crystals and multilayered thin films with Cnv symmetry. In these films THE caused by cooperative magnetization reversal in the exchange-coupled Co-nanoparticles and peripheral chiral spin textures in CoSi-nanoparticles.

Advisor: Xiaoshan Xu

Share

COinS