Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

10-1-2021

Citation

Hao, G.; N’Diaye, A.T.; Ekanayaka, T.K.; Dale, A.S.; Jiang, X.; Mishra, E.; Mellinger, C.; Yazdani, S.; Freeland, J.W.; Zhang, J.; et al. Magnetic Field Perturbations to a Soft X-ray-Activated Fe (II) Molecular Spin State Transition. Magnetochemistry 2021, 7, 135. https://doi.org/10.3390/ magnetochemistry7100135

Comments

Copyright: © 2021 by the authors. CC-BY license

Abstract

The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2 }2 (bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.

Share

COinS