"Fast strain wave induced magnetization changes in long cobalt bars: Do" by S Davis, J A. Borchers et al.

Department of Physics and Astronomy: Publications and Other Research

 

Document Type

Article

Date of this Version

2015

Citation

JOURNAL OF APPLIED PHYSICS 117, 063904 (2015)

Comments

Copyright 2015 Used by permission

Abstract

A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change the magnetization direction in 40 lm wide Co bars with an aspect ratio of 103. The rapidly alternating strain wave rotates the magnetization away from the long axis into the short axis direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc frequencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the traveling strain wave does rotate the magnetization away from the long axis direction and both yield quantitatively similar values for the rotated magnetization. An investigation of the behavior of short axis magnetization with increasing strain wave amplitude on a series of samples with variable edge roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model. This is consistent with expectations that domain wall motion cannot track the rapidly varying strain.

Included in

Physics Commons

Share

COinS