Department of Physics and Astronomy: Publications and Other Research

 

ORCID IDs

Kirill D. Belashchenko https://orcid.org/0000-0002-8518-1490

Document Type

Article

Date of this Version

5-4-2021

Citation

Phys. Rev. Materials 5, 054401 (2021)

https://doi.org/10.1103/PhysRevMaterials.5.054401

Comments

©2021 American Physical Society. Used by permission.

Abstract

We study realizations of spirals and skyrmions in two-dimensional antiferromagnets with a triangular lattice on an inversion-symmetry-breaking substrate. As a possible material realization, we investigate the adsorption of transition-metal atoms (Cr, Mn, Fe, or Co) on a monolayer of MoS2, WS2, or WSe2 and obtain the exchange, anisotropy, and Dzyaloshinskii-Moriya interaction parameters using first-principles calculations. Using energy minimization and parallel-tempering Monte Carlo simulations, we determine the magnetic phase diagrams for a wide range of interaction parameters. We find that skyrmion lattices can appear even with weak Dzyaloshinskii-Moriya interactions, but their stability is hindered by magnetic anisotropy. However, a weak easy plane magnetic anisotropy can be beneficial for stabilizing the skyrmion phase. Our results suggest that Cr/MoS2, Fe/MoS2, and Fe/WSe2 interfaces can host spin spirals formed from the 120 antiferromagnetic states. Our results further suggest that for interfaces, such as Fe/MoS2, the Dzyaloshinskii-Moriya interaction is strong enough to drive the system into a three-sublattice skyrmion lattice in the presence of experimentally feasible external magnetic field.

Share

COinS