Department of Physics and Astronomy: Publications and Other Research
ORCID IDs
Xuefei Wua http://orcid.org/0000-0001-9435-4384
Robert Streubel http://orcid.org/0000-0003-4783-892X
Xubo Liu http://orcid.org/0000-0002-2231-0208
Yu Chai http://orcid.org/0000-0001-6085-4321
Thomas P. Russell http://orcid.org/0000-0001-6384-5826
Document Type
Article
Date of this Version
2-2021
Citation
PNAS 2021 Vol. 118 No. 8 e2017355118
https://doi.org/10.1073/pnas.2017355118
Abstract
The assembly and jamming of magnetic nanoparticles (NPs) at liquid–liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid–liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants at the interface produces local magnetic properties, similar to those found with pure magnetic NP solutions. While the net magnetization is smaller, such a clustering of NPs may enable structured liquids with heterogeneous surfaces.
Streubel Movie 1.mp4 (4485 kB)
The FMLD rotates in the oil phase dissolving POSS-NH2 ligands driven by the external rotating magnetic field and it is captured by the optical microscopy.
Streubel Movie 2.mp4 (3485 kB)
The merge of the unjammed droplets initially formed in the oil phase.
Streubel Movie 3.mp4 (4331 kB)
The rotating of dispersed assembled aggregates at the interface of the unjammed droplets.