"Domain wall enabled steep slope switching in MoS2 transistors towards" by Jingfeng Song, Yubo Qi et al.

Department of Physics and Astronomy: Publications and Other Research

 

Document Type

Article

Date of this Version

11-1-2022

Citation

npj 2D Materials and Applications (2022) 6:77 ; https://doi.org/10.1038/s41699-022-00353-1

Comments

Open access.

Abstract

The device concept of ferroelectric-based negative capacitance (NC) transistors offers a promising route for achieving energyefficient logic applications that can outperform the conventional semiconductor technology, while viable operation mechanisms remain a central topic of debate. In this work, we report steep slope switching in MoS2 transistors back-gated by single-layer polycrystalline PbZr0.35Ti0.65O3. The devices exhibit current switching ratios up to 8 × 106 within an ultra-low gate voltage window of Vg = ±0:5 V and subthreshold swing (SS) as low as 9.7 mV decade−1 at room temperature, transcending the 60 mV decade−1 Boltzmann limit without involving additional dielectric layers. Theoretical modeling reveals the dominant role of the metastable polar states within domain walls in enabling the NC mode, which is corroborated by the relation between SS and domain wall density. Our findings shed light on a hysteresis-free mechanism for NC operation, providing a simple yet effective material strategy for developing low-power 2D nanoelectronics.

Included in

Physics Commons

Share

COinS