Department of Physics and Astronomy: Publications and Other Research

 

Document Type

Article

Date of this Version

3-30-2023

Citation

Nature Communications | ( 2023) 14:1780. https://doi.org/10.1038/s41467-023-37560-3

Comments

Open access.

Abstract

Ferroelectric hafnia-based thin films have attracted intense attention due to their compatibility with complementary metal-oxide-semiconductor technology. However, the ferroelectric orthorhombic phase is thermodynamically metastable. Various efforts have been made to stabilize the ferroelectric orthorhombic phase of hafnia-based films such as controlling the growth kinetics and mechanical confinement. Here, we demonstrate a key interface engineering strategy to stabilize and enhance the ferroelectric orthorhombic phase of the Hf0.5Zr0.5O2 thin film by deliberately controlling the termination of the bottom La0.67Sr0.33MnO3 layer. We find that the Hf0.5Zr0.5O2 films on the MnO2-terminated La0.67Sr0.33MnO3 have more ferroelectric orthorhombic phase than those on the LaSrO-terminated La0.67Sr0.33MnO3, while with no wake-up effect. Even though the Hf0.5Zr0.5O2 thickness is as thin as 1.5nm, the clear ferroelectric orthorhombic (111) orientation is observed on the MnO2 termination. Our transmission electron microscopy characterization and theoretical modelling reveal that reconstruction at the Hf0.5Zr0.5O2/ La0.67Sr0.33MnO3 interface and hole doping of the Hf0.5Zr0.5O2 layer resulting from theMnO2 interface termination are responsible for the stabilization of the metastable ferroelectric phase of Hf0.5Zr0.5O2. We anticipate that these results will inspire further studies of interface-engineered hafnia-based systems.

Included in

Physics Commons

Share

COinS