"Stabilizing polar phases in binary metal oxides by hole doping" by Tengfei Cao, Guodong Ren et al.

Department of Physics and Astronomy: Publications and Other Research

 

Document Type

Article

Date of this Version

4-24-2023

Citation

PHYSICAL REVIEW MATERIALS 7, 044412 (2023). 10.1103/PhysRevMaterials.7.044412

Comments

Open access.

Abstract

The recent observation of ferroelectricity in the metastable phases of binary metal oxides, such as HfO2, ZrO2, Hf0.5Zr0.5O2, and Ga2O3, has garnered a lot of attention. These metastable ferroelectric phases are typically stabilized using epitaxial strain, alloying, or defect engineering. Here, we propose that hole doping plays a key role in the stabilization of polar phases in binary metal oxides. Using first-principles density-functional-theory calculations, we show that holes in these oxides mainly occupy one of the two oxygen sublattices. This hole localization, which is more pronounced in the polar phase than in the nonpolar phase, lowers the electrostatic energy of the system, and makes the polar phase more stable at sufficiently large concentrations.We demonstrate that this electrostatic mechanism is responsible for stabilization of the ferroelectric phase of HfO2 aliovalently doped with elements that introduce holes to the system, such as La and N. Finally, we show that spontaneous polarization in HfO2 is robust to hole doping, and a large polarization persists even under a high concentration of holes.

Included in

Physics Commons

Share

COinS