Department of Physics and Astronomy: Publications and Other Research
Document Type
Article
Date of this Version
11-27-2023
Citation
PHYSICAL REVIEW B 108, 174439 (2023). DOI: 10.1103/PhysRevB.108.174439
Abstract
Using first-principles quantum-transport calculations, we investigate spin-dependent electronic and transport properties of antiferromagnetic tunnel junctions (AFMTJs) that consist of (110)-oriented antiferromagnetic (AFM) metal RuO2 electrodes and an insulating TiO2 tunneling barrier. We predict the emergence of a giant tunneling magnetoresistance (TMR) effect in a wide energy window, a series of barrier layer thicknesses, and different interface terminations, indicating the robustness of this effect. We show that the predicted TMR cannot be explained in terms of the global transport spin-polarization of RuO2 (110) but is well understood based on matching the momentum-dependent spin-polarized conduction channels of the two RuO2 (110) electrodes. We predict oscillations of TMR with increasing barrier thickness, indicating a non-negligible contribution from the perfectly epitaxial interfaces. Our work helps the understanding of the physics of TMR in AFMTJs and aids in realizing efficient AFM spintronic devices.
Comments
Open access.