Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

2011

Document Type

Article

Citation

Physical Review Special Topics- Accelerators and Beams 14, 052801 (2008); DOI: 10.1103/PhysRevSTAB.14.052801

Comments

Copyright 2011 The American Physical Society. Used by permission.

Abstract

The improvement of the energy spread, beam divergence, and pointing fluctuations are some of the main challenges currently facing the field of laser-wakefield acceleration of electrons. We address these issues by manipulating the electron beams after their generation using miniature magnetic quadrupole lenses with field gradients of ~500 T/M. By imaging electron beams the spectral resolution of dipole magnet spectrometers can be significantly increased, resulting in measured energy spreads down to 1.0% rms at 190 MeV. The focusing of different electron energies demonstrates the tenability of the lens system and could be used to filter out off-target energies in order to reduce the energy spread even further. By collimating the beam, the shot-to-shot spatial stability of the beam is improved by a factor of 5 measured at a distance of 1 m from the source. Additionally, by deliberating transversely offsetting a quadrupole lens, the electron beam can be steered in any direction by several mrad. These methods can be implemented while still maintaining the ultrashort bunch duration and low emittance of the beam and, except for undesired electron energies in the energy filter, without any loss of charge. This reliable and compact control of laser-wakefield accelerated electron beams is independent of the accelerator, itself, allowing immediate application of currently available beams.

Share

COinS