Department of Physics and Astronomy: Publications and Other Research
Date of this Version
June 2005
Abstract
In this letter, we report on the study of nanoscale polarization relaxation phenomena in polycrystalline PbZr0.4Ti0.6O3 films. Piezoresponse force microscopy (PFM) images of the as-grown sample reveal grains with a range of contrast, from fully white to gray to fully black. It is shown that this local change in the contrast (magnitude) of the piezoresponse from grain to grain can be attributed to the crystallographic orientation within each grain. PFM-based relaxation experiments show that the rate of relaxation is different for each grain, furthermore it is strongly dependent on the tilt of individual crystallographic orientation with respect to the polar axis. Strongly tilted away nonpolar axis grains show a much stronger decay of the polarization compared to polar axis-oriented grains. Therefore, for an ensemble of grains under a common top electrode, the relaxation events would first take place in grains, which are nonpolar axis oriented.
Comments
Published in Appl. Phys. Lett. 86, 262910 2005. Copyright © 2005 American Institute of Physics. Used by permission.