Research Papers in Physics and Astronomy


Date of this Version



Nanotechnology 27 (2016) 155705 (6pp)


© 2016 IOP Publishing Ltd


Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects.