Research Papers in Physics and Astronomy
Date of this Version
2005
Document Type
Article
Citation
Appl. Phys. Lett. 86, 142501
Abstract
The electronic screening length, the distance over which an electric field is attenuated in a material, imposes a lower physical bound on the lateral size scaling of semiconductor field effect devices. Alternatives will be needed to achieve devices whose characteristic dimensions approach a nanometer. In this work, we demonstrate the atomic-scale nature of screening at high electron densities, using the polarization field of a ferroelectric oxide, Pb(Zr,Ti)O3, to electrostatically modulate the metallicity of ultrathin manganite La1−xSrxMnO3 (LSMO) films near the metal-insulator transition. Within the screening length, the transport characteristics of LSMO vary sharply at the scale of a single atomic layer.
Comments
Used by permission.