Department of Physics and Astronomy: Publications and Other Research

 

Document Type

Article

Date of this Version

10-12-2017

Citation

PHYSICAL REVIEW A 96, 042706 (2017). DOI: 10.1103/PhysRevA.96.042706

Comments

Copyright ©2017 American Physical Society. Used by permission./

Abstract

We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2s−2p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.

Share

COinS