Department of Physics and Astronomy: Publications and Other Research
Date of this Version
11-11-2017
Citation
APL Materials 5, 096103 (2017).
https://doi.org/10.1063/1.4992006
Abstract
The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 x 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.
Comments
© 2017 by the Authors. Published by American Institute of Physics. Used by permission.