Plant Pathology Department
Document Type
Article
Date of this Version
2009
Abstract
Chlorella virus PBCV-1 (Paramecium bursaria chlorella virus-1) encodes the smallest protein (94 amino acids, named Kcv) previously known to form a functional K+ channel in heterologous systems. In this paper, we characterize another chlorella virus encoded K+ channel protein (82 amino acids, named ATCV-1 Kcv) that forms a functional channel in Xenopus oocytes and rescues Saccharomyces cerevisiae mutants that lack endogenous K+ uptake systems. Compared with the larger PBCV-1 Kcv, ATCV-1 Kcv lacks a cytoplasmic N-terminus and has a reduced number of charged amino acids in its turret domain. Despite these deficiencies, ATCV-1 Kcv accomplishes all the major features of K+ channels: it assembles into a tetramer, is K+ selective and is inhibited by the canonical K+ channel blockers, barium and caesium. Single channel analyses reveal a stochastic gating behavior and a voltage-dependent conductance that resembles the macroscopic I/V relationship. One difference between PBCV-1 and ATCV-1 Kcv is that the latter is more permeable to K+ than Rb+. This difference is partially explained by the presence of a tyrosine residue in the selective filter of ATCV-1 Kcv, whereas PBCV-1 Kcv has a phenylalanine. Hence, ATCV-1 Kcv is the smallest protein to form a K+ channel and it will serve as a model for studying structure–function correlations inside the potassium channel pore.
Comments
Published in Biochemical Journal 420 (2009), pp. 295–303; doi:10.1042/BJ20090095 Copyright © 2009 Sabrina Gazzarrini, Ming Kang, Alessandra Abenavoli, Giulia Romani, Claudio Olivari, Daniele Gaslini, Giuseppina Ferrara, James L. van Etten, Michael Kreim, Stefan M. Kast, Gerhard Thiel, and Anna Moroni.