Plant Science Innovation, Center for

 

Document Type

Article

Date of this Version

9-2013

Citation

The Plant Cell, Vol. 25: September 2013, pp. 3212–3227.

Comments

Copyright 2013 American Society of Plant Biologists. Used by permission.

Abstract

In angiosperms, the endosperm provides nutrients for embryogenesis and seed germination and is the primary tissue where gene imprinting occurs. To identify the imprintome of early developing maize (Zea mays) endosperm, we performed highthroughput transcriptome sequencing of whole kernels at 0, 3, and 5 d after pollination (DAP) and endosperms at 7, 10, and 15 DAP, using B73 byMo17reciprocal crosses.Weobserved gradually increased expression of paternal transcripts in 3- and 5-DAP kernels. In 7-DAP endosperm, the majority of the genes tested reached a 2:1 maternal versus paternal ratio, suggesting that paternal genes are nearly fully activated by 7 DAP. A total of 116, 234, and 63 genes exhibiting parent-specific expression were identified at 7, 10, and 15 DAP, respectively. The largest proportion of paternally expressed genes was at 7 DAP, mainly due to the significantly deviated parental allele expression ratio of these genes at this stage, while nearly 80% of the maternally expressed genes (MEGs) were specific to 10 DAP and were primarily attributed to sharply increased expression levels compared with the other stages. Gene ontology enrichment analysis of the imprinted genes suggested that 10-DAP endosperm-specific MEGs are involved in nutrient uptake and allocation and the auxin signaling pathway, coincident with the onset of starch and storage protein accumulation.

Share

COinS