Plant Science Innovation, Center for
ORCID IDs
http://orcid.org/0000-0003-1979-2880
Document Type
Article
Date of this Version
2018
Citation
2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight (BB) of rice, uses transcription activator-like effectors (TALEs) to interact with the basal transcription factor gamma subunit OsTFIIAγ5 (Xa5) and activates the transcription of host genes. However, how OsTFIIAγ1, the other OsTFIIAγ protein, functions in the presence of TALEs remains unclear. In this study, we show that OsTFIIAγ1 plays a compensatory role in the absence of Xa5. The expression of OsTFIIAγ1, which is activated by TALE PthXo7, increases the expression of host genes targeted by avirulent and virulent TALEs. Defective OsTFIIAγ1 rice lines show reduced expression of the TALE-targeted susceptibility (S) genes, OsSWEET11 and OsSWEET14, which results in increased BB resistance. Selected TALEs (PthXo1, AvrXa7 and AvrXa27) were evaluated for interactions with OsTFIIAγ1, Xa5 and xa5 (naturally occurring mutant form of Xa5) using biomolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST). BiFC and MST demonstrated that the three TALEs bind Xa5 and OsTFIIAγ1 with a stronger affinity than xa5. These results provide insights into the complex roles of OsTFIIAγ1 and OsTFIIAγ5 in TALE-mediated host gene transcription.
Comments
Molecular Plant Pathology (2018) 19(10), 2248–2262 DOI : 10.1111/mpp.12696