Psychology, Department of
Document Type
Article
Date of this Version
10-2009
Citation
Pharmacology Biochemistry and Behavior 93:4 (October 2009), pp. 433–442; doi: 10.1016/j.pbb.2009.06.005
Abstract
Many antipsychotic drugs disrupt active components of maternal behavior such as pup approach, pup retrieval and nest building at clinically relevant doses in postpartum female rats. However, the neurochemical mechanisms underlying such a disruptive effect remain to be determined. This study examined the neurochemical mechanisms that mediate the disruptive effects of haloperidol (a typical antipsychotic) and clozapine (an atypical antipsychotic) on rat maternal behavior. Postpartum rats were administered with haloperidol (0.2 mg/kg, sc) or clozapine (10.0 mg/kg, sc) together with either vehicle (saline or water), quinpirole (a selective dopamine D2/D3 agonist, 0.5 or 1.0 mg/kg, sc), or 2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT2A/2C agonist, 1.0 or 2.5 mg/kg, sc), and their maternal behaviors were tested at different time points before and after drug administration. Haloperidol and clozapine treatment disrupted pup approach, pup retrieval, pup licking and nest building. Pretreatment of quinpirole, but not DOI, dose-dependently reversed the haloperidol-induced disruptions. In contrast, pretreatment of DOI, but not quinpirole, dose-dependently reversed the clozapine-induced disruptions. Quinpirole pretreatment even exacerbated the clozapine-induced disruption of pup retrieval and nest building. These findings suggest a double dissociation mechanism underlying the disruption of haloperidol and clozapine on rat maternal behavior. Specifically, haloperidol disrupts maternal behavior primarily by blocking dopamine D2 receptors, whereas clozapine exerts its disruptive effect primarily by blocking the 5-HT2A/2C receptors. Our findings also suggest that 5-HT receptors are involved in the mediation of rat maternal behavior.
Comments
Copyright © 2009 Elsevier Inc. Used by permission.