Statistics, Department of

The R Journal
Date of this Version
12-2017
Document Type
Article
Citation
The R Journal (December 2017) 9(2); Editor: Roger Bivand
Abstract
Requiring no analytical forms, nonparametric discrete patterns are flexible in representing complex relationships among random variables. This makes them increasingly useful for data-driven applications. However, there appears to be no software tools for simulating nonparametric discrete patterns, which prevents objective evaluation of statistical methods that discover discrete relationships from data. We present a simulator to generate nonparametric discrete functions as contingency tables. User can request strictly many-to-one functional patterns. The simulator can also produce contingency tables representing dependent non-functional and independent relationships. An option is provided to apply random noise to contingency tables. We demonstrate the utility of the simulator by showing the advantage of the FunChisq test over Pearson’s chi-square test in detecting functional patterns. This simulator, implemented in the function simulate_tables in the R package FunChisq (version 2.4.0 or greater), offers an important means to evaluate the performance of nonparametric statistical pattern discovery methods.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2017, The R Foundation. Open access material. License: CC BY 4.0